Basisprüfung Lineare Algebra

Name		Note
Vorname		
Studiengang		
Leginummer		
Datum	Dienstag, 29. Januar 2019	

1	2	3	4	5	6	Total
6 P	6 P	6 P	6 P	6 P	6 P	36 P

Wichtige Hinweise:

- Dieses Deckblatt darf erst auf Anweisung des Assistenten umgeblättert werden!
- Bitte füllen Sie zuerst dieses Deckblatt aus.
- Schalten Sie Ihr Handy aus und verstauen Sie es in Ihrer Tasche.
- Legen Sie Ihre Legi auf den Tisch.
- Prüfungsdauer: **120 Minuten**.
- Erlaubte Hilfsmittel: Keine.
- Alle Aufgaben werden gleich gewichtet (jeweils 6 Punkte).
- Begründen Sie Ihre Aussagen. Nicht motivierte Lösungen werden nicht akzeptiert! Davon ausgenommen ist nur Aufgabe 6 (Multiple-Choice-Aufgabe).
- Tragen Sie die Lösung von Aufgabe 6 (Multiple-Choice-Aufgabe) auf dem Extrablatt (letzte Seite dieser Prüfung) ein.
- Beginnen Sie jede der sechs Aufgaben auf einer neuen Seite und schreiben Sie Ihren Namen auf **alle** Blätter.
- Bitte nicht mit Bleistift / Rot / Grün schreiben!
- Versuchen Sie, Ihren Lösungsweg möglichst klar darzustellen, und arbeiten Sie sorgfältig.

Viel Erfolg!

Notenskala: Die maximal erreichbare Punktzahl ist 36. Für die Note 6.00 benötigen Sie mindestens 34 und für die Note 4.00 mindestens 17 Punkte.

1. [6 Punkte] In dieser Aufgabe betrachten wir die Matrix

$$A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & 2 \\ 1 & 2 & 1 \end{bmatrix} \in \mathbb{R}^{3 \times 3}.$$

- a) [2.5 Punkte] Berechnen Sie die Eigenwerte und zugehörige Eigenvektoren von A.
- **b)** [1 Punkt] Bestimmen Sie eine orthonormierte Basis zu A aus den Eigenvektoren.
- c) [2.5 Punkte] Berechnen Sie die Matrix

$$e^A = \lim_{N \to \infty} \sum_{n=0}^{N} \frac{1}{n!} A^n \in \mathbb{R}^{3 \times 3}.$$

2. [6 Punkte] Gegeben seien

$$A = \frac{1}{15} \begin{bmatrix} -2 & -14 \\ 8 & -19 \\ 20 & -10 \end{bmatrix}, \qquad b = \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}.$$

- a) [1 Punkt] Geben Sie die Normalgleichungen für die Matrix A und den Vektor b an.
- **b)** [2 Punkte] Berechnen Sie die Singulärwerte von A.

Hinweis: Die Singulärwerte enthalten keine Wurzeleinträge. Dies gilt auch für die Matrizen U und V in Teilaufgabe \mathbf{c}). Falls Sie sich bei \mathbf{b}) verrechnet haben, können Sie bei \mathbf{c}) mit den Werten 2 und 1 rechnen.

- c) [2 Punkte] Berechnen Sie die Singulärwertzerlegung von A an, also $A = U \Sigma V^{\top}$, wobei $\Sigma \in \mathbb{R}^{3 \times 2}$.
- d) [1 Punkt] Bestimmen Sie ein x sodass $||Ax b||_2 = \min_{v \in \mathbb{R}^2} ||Av b||_2$ gilt.
- **3.** [6 Punkte] Gegeben sei die Matrix

$$A = \begin{bmatrix} 0 & \alpha & 2 \\ 1 & 2 & -2 \\ 2 & \beta & 1 \end{bmatrix} \in \mathbb{R}^{3 \times 3}.$$

a) [1.5 Punkte] Finden Sie $\alpha, \beta \in \mathbb{R}$, so dass die Spaltenvektoren von A orthogonal sind.

Im Folgenden seien α und β nun wie in Teilaufgabe **a**).

b) [3.5 Punkte] Geben Sie eine QR-Zerlegung von A an.

Hinweis: Leider lässt sich hier $\sqrt{2}$ nicht vermeiden...

c) [1 Punkt] Berechnen Sie $|\det(A)|$.

4. [6 Punkte] Sei \mathcal{P}_3 der reelle Vektorraum der Polynome auf \mathbb{R} vom Grad strikt kleiner als 3. Im Folgenden betrachten wir die Mengen

$$\mathcal{B}_1 = \{1, x, x^2\} \subseteq \mathcal{P}_3,$$

 $\mathcal{B}_2 = \{x - 1, x + 1, x^2 - 1\} \subseteq \mathcal{P}_3$

sowie die Abbildung $\mathcal{F} \colon \mathcal{P}_3 \to \mathcal{P}_3$, die für alle $p \in \mathcal{P}_3$, $x \in \mathbb{R}$ durch

$$[\mathcal{F}(p)](x) = p(x) - \left(\int_0^1 y \, p'(y) \, \mathrm{d}y\right) \cdot x$$

gegeben ist (wobei p' hier wie gewohnt die Ableitung von p bezeichnet).

- a) [1 Punkt] Zeigen Sie, dass \mathcal{F} eine lineare Abbildung ist.
- b) [1.5 Punkte] Bestimmen Sie die Abbildungsmatrix F, durch die \mathcal{F} beschrieben wird, wenn wir die Basis \mathcal{B}_1 in \mathcal{P}_3 verwenden.
- c) [2 Punkte] Zeigen Sie, dass \mathcal{B}_2 eine Basis von \mathcal{P}_3 ist.
- **d)** [1.5 Punkte] Bestimmen Sie die Transformationsmatrix T für den Basiswechsel von \mathcal{B}_2 nach \mathcal{B}_1 (T überführt also Koordinaten bezüglich \mathcal{B}_2 in Koordinaten bezüglich \mathcal{B}_1).
- **5.** [6 Punkte] Sei $A \in \mathbb{R}^{n \times n}$ symmetrisch mit det(A) < 0. Zeigen Sie folgenden Aussagen:
 - a) [1 Punkt] Mindestens ein Eigenwert von A ist strikt negativ.
 - **b)** [2 Punkte] Es gibt ein $x \in \mathbb{R}^n$, so dass $x^T A x < 0$.
 - c) [3 Punkte] Die Aussagen in a) und b) gelten auch für Matrizen, die nicht symmetrisch sind.

- **6.** [6 Punkte] Multiple-Choice: Auf dem Extrablatt "Richtig" oder "Falsch" ankreuzen.
 - a) [1 Punkt] Sei $n \in \mathbb{N}$ und A eine reelle $n \times n$ Matrix, die in Matlab eingegeben wurde. Folgende Befehle werden darauf eingegeben:

Kreuzen Sie 'Richtig' an, wenn wir erwarten können, dass Matlab den logischen Wert 1 zurückgibt. Kreuzen Sie 'Falsch' an, wenn wir erwarten können, dass Matlab den logischen Wert 0 zurückgibt.

- **b)** [1 Punkt] Sei A eine reelle 3×3 Matrix, welche schiefsymmetrisch ist, das heisst $A^{\top} = -A$. Dann ist gilt $\det(A) = 0$.
- c) [1 Punkt] Wir definieren die Matrix

$$P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

Es gilt dann, dass $P^{100} = P^{21}$.

- d) [1 Punkt] Sei A eine reelle 2×2 Matrix und habe die Eigenwerte $\lambda_1, \lambda_2 \in \mathbb{C}$. Die characteristische Gleichung zu A lautet $x^2 (\lambda_1 + \lambda_2) \cdot x + \lambda_1 \cdot \lambda_2 = 0$.
- e) [1 Punkt] Die LR-Zerlegung einer Matrix A liefert

$$L = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \frac{1}{7} & \frac{6}{7} & 1 \end{bmatrix} , \qquad R = \begin{bmatrix} 7 & 8 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} .$$

Die Determinante von A ist 14.

f) [1 Punkt] Die folgende Matrix ist gegeben,

$$A = \begin{bmatrix} 1 & 8 & 0 \\ 2 & -1 & 0 \\ -3 & 5 & 1 \end{bmatrix}.$$

Somit gilt $Kern(A) = \{0\}.$

Namen ein.

Name: _____

Extrablatt: Aufgabe 6

Tragen Sie auf dieses	Extrablatt die Lösungen	n zu den "Richtig ode	er Falsch"-Fragen aus	Aufgabe 6 ein,

indem Sie das Kästchen ankreuzen, welches der korrekten Antwort entspricht. Tragen Sie oben Ihren

Bewertungsschema: Jede *korrekte* Antwort gibt einen Punkt, jedes *nicht korrekt gesetzte* Kreuz gibt einen Punkt Abzug. Für jede Teilaufgabe, für die *kein Kreuz* gemacht wurde, gibt es 0 Punkte. Die Summe der Punktzahlen für die ganze Aufgabe 6 wird, falls negativ, auf 0 aufgerundet.

Teilaufgabe	Richtig	Falsch
a)		
b)		
c)		
d)		
e)		
f)		